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ABSTRACT: In this investigation, semiempirical NMR
chemical shift prediction methods are used to evaluate the
dynamically averaged values of backbone chemical shifts
obtained from unbiased molecular dynamics (MD) simu-
lations of proteins. MD-averaged chemical shift predictions
generally improve agreement with experimental values when
compared to predictions made from static X-ray structures.
Improved chemical shift predictions result from population-
weighted sampling of multiple conformational states and from
sampling smaller fluctuations within conformational basins. Improved chemical shift predictions also result from discrete changes
to conformations observed in X-ray structures, which may result from crystal contacts, and are not always reflective of
conformational dynamics in solution. Chemical shifts are sensitive reporters of fluctuations in backbone and side chain torsional
angles, and averaged 1H chemical shifts are particularly sensitive reporters of fluctuations in aromatic ring positions and
geometries of hydrogen bonds. In addition, poor predictions of MD-averaged chemical shifts can identify spurious conformations
and motions observed in MD simulations that may result from force field deficiencies or insufficient sampling and can also
suggest subsets of conformational space that are more consistent with experimental data. These results suggest that the analysis of
dynamically averaged NMR chemical shifts from MD simulations can serve as a powerful approach for characterizing protein
motions in atomistic detail.

■ INTRODUCTION
Efforts to understand and quantify the structural features that
influence the NMR chemical shifts of nuclei in proteins have
spanned several decades.1−4 Progress in these efforts has
precipitated the development of several methods that
successfully map the dependency of protein chemical shifts
on a multitude of structural factors with increasing speed and
accuracy.5−12 These chemical shift prediction tools have
enabled computational methods for calculating protein
structures using only chemical shifts as restraints. Initial
implementations of these methods utilized a structural
homology driven molecular fragment replacement ap-
proach.13−15 More recently, chemical shifts have been
successfully implemented in restrained conformational
searches16,17 in a manner that is identical to and compatible
with conventional NOE and RDC driven NMR structure
calculation protocols.
Isotropic chemical shifts, which reflect averages from

ensembles of molecules on the millisecond time scale, have
also been gaining attention as probes of conformational
dynamics. Chemical shifts have been utilized to predict S2

order parameters18,19 reflecting their sensitivity to picosecond−
nanosecond (ps−ns) time scale fluctuations, and to predict
backbone20,21 and side chain22−24 dihedral angle population
distributions, reflecting their sensitivity to conformational
averaging on the millisecond time scale. Prediction of chemical
shifts from structural ensembles of proteins derived from
molecular dynamics (MD) simulations can result in improved
agreements with experimental measurements when compared

to chemical shifts predicted from individual static struc-
tures,25,26 suggesting that available methods for predicting
chemical shifts from protein structures may be sufficiently
accurate and sensitive to conformational fluctuations to
describe structural dynamics in proteins.
To elucidate the specific motional processes observed in MD

simulations of proteins that are well described by currently
available chemical shift prediction methods, we have conducted
a detailed analysis of the dynamically averaged values of
chemical shifts predicted from molecular dynamics simulations
of proteins. In this investigation, we have focused on
simulations of a pair of structurally homologous ribonuclease
H enzymes from Escherichia coli (ecRNH) and Thermus
thermophilus (ttRNH), which have been shown to possess
substantial conformational dynamics on the ps−ns and μs−ms
time scales.27,28 We find that, on average, chemical shift values
predicted from MD simulations are in better agreement with
experimental values than those predicted from static structures.
To identify the specific conformational changes and motional
processes associated with improved agreement, we have
examined the conformational fluctuations in the regions of
the proteins where MD averaged chemical shift predictions
provide the largest improvements over predictions from static
structures. We observe that improved chemical shift predictions
can result from a population weighted sampling of multiple
conformational states and from sampling fluctuations within
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individual conformational basins. We find that chemical shifts
are sensitive reporters of fluctuations in backbone and side
chain torsional angles, and averaged 1H chemical shifts are
particularly sensitive reporters of fluctuations in aromatic ring
positions and the presence and geometries of hydrogen bonds.
Importantly, we also find that improved chemical shift

predictions can result from discrete changes to conformations
observed in X-ray structures, which may result from crystal
contacts, and may not be reflective of conformational dynamics
in solution. These results emphasize the importance of
identifying the specific structural and dynamic features of an
MD simulation that influence the chemical shift predictions. In
addition, we demonstrate that poor predictions of averaged
chemical shifts can identify potentially spurious conformations
and motions observed in MD simulations that may result from
force field deficiencies or insufficient sampling and can also
suggest subsets of conformational space that are more
consistent with experimental data.

■ RESULTS AND DISCUSSION
In this investigation, we used several of the most recently
developed and best performing chemical shift prediction tools,
Sparta+, Shiftx2, ShiftX+, Camshift, and ShiftS,5−12 to calculate
the average values of backbone Cα, Cβ, C′, Hα, HN, and N
chemical shifts predicted from unbiased explicit solvent MD
simulations of a pair of structurally homologous Ribonuclease
H enzymes from E. coli (ecRNH) and T. thermophilus (ttRNH).
MD simulations of varying lengths, ranging from 100 to 1000
ns, were run using the Amber99SB29 and Amber99SB-ILDN30

force fields in TIP3P water.31 Details of the MD simulation
protocols and the preparation of the coordinates of each MD
snapshot and X-ray crystal structure for input into the chemical
shift predictors are presented in the Materials and Methods
section. In all of the analyses presented here, the average
chemical shift value reported for an MD trajectory (δMD) is
determined by linear averaging of the predicted chemical shift
for each snapshot saved in the trajectory.
Dynamic Averaging of Chemical Shifts from Molec-

ular Dynamics Simulations of Proteins. A detailed analysis
of the average chemical shifts predicted from MD simulations
of the globular proteins ttRNH and ecRNH demonstrates that
averaged chemical shifts, as predicted by the most recently
developed semiempirical shift prediction methods, provide
atomistic structural descriptions of a variety of conformational
changes and dynamic processes in proteins. A comparison of
the chemical shift prediction root mean square deviation
(rmsd) values from experimental values obtained from X-ray
structures and from unbiased 100 ns MD simulations using the
amber99SB force field are shown for ecRNH and ttRNH in
Table 1.
We observe a remarkable improvement in Sparta+ prediction

rmsd values across all backbone atom types when comparing
MD averaged predictions to predictions made from the 2.8 Å
resolution X-ray structure (PDB code 1RIL)32 of ttRNH.
Smaller but consistent improvements were obtained in the case
of ecRNH, where a higher resolution 1.5 Å X-ray structure was
available (PDB code 2RN2).33

Recent analyses of chemical shifts predicted from MD
simulations have focused on improvements of shift predictions
as quantified by correlation coefficients or rmsd’s from
experimental values for given atom types across an entire
protein.25,26 We find that considerable additional insight is
gained by examining structural dynamics in the regions of the

proteins where MD averaged chemical shift predictions (δMD)
produce the largest differences compared to predictions
obtained from static X-ray crystal structures (δX-ray). Figure
1 compares the deviations between the experimentally
measured values (δExp) of Cα and HN ttRNH chemical shifts,
the δX-ray predictions, and the δMD predictions from a 100 ns
simulation using the amber99SB force field. A substantial
number of residues show differences between δX-ray and δMD
that are very large relative to the reported prediction accuracy
obtained by Sparta+ applied to databases of static structures
(0.49 and 0.94 ppm for HN and Cα nuclei, respectively). This
suggests the presence of substantial conformational dynamics in
the MD trajectory or a large change in the average
conformation of the protein observed in the MD trajectory
compared to the X-ray structure. Similar plots are presented for
the additional backbone nuclei of ttRNH in Supporting
Information Figure S1 and for all available backbone nuclei
of ecRNH in Supporting Information Figure S2.

Protein Structural Dynamics That Improve Chemical
Shift Predictions. In the case of carbon nuclei, the largest
differences between δX-ray and δMD are located in loop
regions and at the ends of secondary structure elements,
reflecting the primary dependence of carbon shifts on backbone
ϕ and ψ angles. In Figure 2, the time course and distribution of
the chemical shift predictions of Ala 145 Cα are shown for a
100 ns Amber99SB MD trajectory of ttRNH along with
representative conformations from the MD trajectory and the
X-ray structure. The time course and distribution of the Ala 145
Cα shift suggests that the presence of an equilibrium
distribution of helical and nonhelical conformations, or helix
“fraying”, at the end of the C-terminal helix of ttRNH produces
a more accurate prediction of the chemical shifts than the coil
conformation observed in the crystal structure. Similarly close
agreement is observed between the MD averaged predictions
and the experimental measurements for all of the backbone
nuclei of Ala 145 (Supporting Information Figure S3).
Remarkably, the relative populations of the helical and coil
states obtained within 100 ns of simulation produce chemical
shift predictions that agree very well with the experimentally
measured chemical shift, suggesting that an accurate estimate of
the relative populations observed in solution has been obtained,
within the limitations of the accuracies of the shift predictor. A
second example where averaged chemical shifts appear to be a
useful reporter of fraying terminal elements of secondary
structure is shown in Figure 3. Here, the time course and
distribution of the chemical shift predictions of Glu 4 HN

Table 1. Comparison of rmsd’s between Experimental
Chemical Shifts and Sparta+ Chemical Shift Predictions
Obtained from X-ray Structures and MD Simulationsa

Sparta+ prediction rmsd

Cα Cβ C′ HN Hα N

ttRNH

X-ray 1.00 1.14 1.21 0.44 0.32 2.70
MD 0.68 1.01 1.06 0.35 0.23 2.17

ecRNH
X-ray 0.74 - - 0.39 0.25 2.51
MD 0.70 - - 0.36 0.25 2.25

aPDB entries 1RIL and 2RN2 were used for X-ray predictions of
ttRNH and ecRNH, respectively. MD values were calculated from
unbiased 100 ns simulations using the amber99SB force field in TIP3P
water.
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obtained from a 1 μs simulation of ecRNH demonstrates that
the populations of a β-sheet conformation and more a
disordered coil conformation observed in the simulation
produce an excellent agreement between the predicted and
experimental chemical shift.
The largest differences between δX-ray and δMD predictions

for 1H spins are clustered around aromatic side chains and
reflect the large effects of ring currents. A recent study has
demonstrated that the functional forms implemented in
semiempirical chemical shift predictors to predict the
magnitudes of ring current effects have been parametrized
with a high level of accuracy, resulting in rmsd’s of less than 0.1
ppm when compared to benchmark quantum calculations.34

The effect that the dynamics of aromatic side chains can have
on 1H shifts is illustrated in Figure 4. Here, the time course and
distribution of the chemical shift predictions of His 28 HN
obtained from a 100 ns Amber99SB simulation of ttRNH are
shown with the time course of the isolated ring current
contribution to the chemical shift and representative con-
formations from the MD trajectory and the X-ray structure.
The magnitude of the ring current effects experienced by the

HN proton fluctuates substantially with the conformations of
the proximal aromatic side chains throughout the trajectory.
The agreement between the MD averaged chemical shift
prediction and the experimental value, compared to the
chemical shift predicted from the X-ray structure, suggests
that the conformation observed in the X-ray structure is not
significantly populated in solution. These results provide
support for the relative populations of the side chain
conformations observed in the simulation. The magnitude of
the ring current effects observed in ttRNH demonstrates that a
less detailed interpretation of dynamically averaged proton
chemical shifts, in terms of their deviation from random coil
values, used to infer secondary structure propensities may
overlook and misinterpret significant contributions due to ring
current effects.
The largest improvements between δX-ray and δMD for N

shifts, which are sensitive to χ1 side chain dihedral angles, are
primarily due to side chain dynamics and sampling of multiple
rotameric states in simulations. An example is presented in
Figure 5 for the N atom of the ecRNH residue Val 5 from a 450
ns Amber99SB-ILDN MD simulation. The improvements in

Figure 1. Comparison of Sparta+ chemical shift predictions for ttRNH obtained from an X-ray structure and a 100 ns MD simulation in the
amber99SB force field. For each residue for which an experimentally measured chemical shift (δExp) was available, the magnitude of the deviation
between the X-ray predicted value (δX-ray) and the experimental value, |δX-ray − δExp|, and the magnitude of the deviation between the MD
averaged prediction (δMD) and the experimental value, |δMD − δExp|, are compared. |δX-ray − δExp| − |δMD − δExp| is shown for Cα atoms in
panel A and HN atoms in panel B. A positive value of |δX-ray − δExp| − |δMD − δExp| indicates that δMD is in better agreement with experiment,
while a negative value indicates that δX-ray is in better agreement. Residues are colored according to their secondary structure in the X-ray structure
with green, red, and yellow corresponding to coil, helix, and sheet, respectively. Residues with aromatic side chains are displayed as cyan squares in
panel B. The reported standard deviation of Sparta+ predictions obtained from a benchmark database of X-ray structures for Cα and HN atoms are
displayed as dotted lines on for comparison.

Figure 2. Chemical shift predictions of Ala 145 Cα in a 100 ns MD simulation of ttRNH in the amber99SB force field. (a) The value of the Sparta+
predicted chemical shift of Ala 145 Cα for snapshots saved every 4.5 ps of the MD trajectory. (b) The normalized distribution of the Sparta+
predicted shifts of Ala 145 Cα from the MD trajectory. The Sparta+ prediction obtained from the X-ray structure (pdb code 1RIL) is shown as a red
square, the average value of the Sparta+ predictions over the entire MD trajectory is shown as a blue square, and the experimentally measured value
is shown as a black diamond. (c) The conformation of Ala 145 observed in the X-ray structure (red) and from two representative MD snapshots
(blue), along with the corresponding Sparta+ shift prediction of Ala 145 Cα for those conformations. Ala 145 Cα is colored cyan in the X-ray
structure and magenta in the MD snapshots.
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the N shift predictions suggest that MD simulations of 100−
1000 ns can obtain reasonably accurate population estimates of
the distribution of χ1 torsion angles for side chain rotamers.
Changes in X-ray Structure Conformations That

Improve Chemical Shift Predictions. The analysis of the
time-course and distributions of individual chemical shift values
is particularly useful for determining if an improvement in a
chemical shift prediction is the result of a discrete change in a
conformation observed in a crystal structure, such as those that
arise from crystal packing, rather than significant conforma-
tional dynamics in solution. As shown in Figure 6, the time
course and distribution of the chemical shift prediction of
ttRNH Phe 27 C′ suggest that the simulation originates from a
conformation that is incompatible with the experimental
solution chemical shift, but ∼30 ns into the simulation, a
conformational change occurs that produces predicted shifts in

much better agreement with the experimental value. This
conformational change involves the formation of a hydrogen
bond not present in the crystal structure, and examination of
the time course and of distribution of δMD of the trajectory
suggests that this conformation is likely stable in solution. That
is, the chemical shift predictions suggest that populating only
the second conformation would produce a predicted average
chemical shift that is closer to the experimental value than the
average chemical shift prediction resulting from the sampled
population distribution of the initial conformation and the
second conformation observed in the simulation. It is
interesting to note that in this instance, the chemical shift
predictions of His 30 HN, which forms the hydrogen bond with
Phe 27, do not exhibit the two state behavior observed in Phe
27 C′ which enable the discrimination between the
conformations. An examination of the structural factors which

Figure 3. Chemical shift predictions of Glu 4 HN in a 1 μs MD simulation of ecRNH in the amber99SB force field. (a) The value of the Sparta+
predicted chemical shift of Glu 4 HN for snapshots saved every 4.5 ps of the MD trajectory. (b) The value of the ψ dihedral angle of Val 3 (ψ3) for
snapshots saved every 4.5 ps of the MD trajectory. (c) The normalized distribution of the Sparta+ predicted shifts of Glu 4 HN from the trajectory.
The Sparta+ prediction obtained from the X-ray structure (pdb code 2RN2) is shown as a red square, the average value of the Sparta+ predictions
over the entire MD trajectory is shown as a blue square, and the experimentally measured value is shown as a black diamond. (d) The conformation
of Glu 4 observed in the X-ray structure (red) and from two representative MD snapshots (blue), along with the corresponding Sparta+ shift
prediction of Glu 4 HN and the ψ value of Val 3 for those conformations. Glu 4 HN is colored cyan in the X-ray structure and magenta in the MD
snapshots.

Figure 4. Chemical shift predictions of His 28 HN in a 100 ns MD simulation of ttRNH in the amber99SB force field. (a) The value of the Sparta+
predicted chemical shift of His 28 HN for snapshots saved every 4.5 ps of the MD trajectory. (b) The value of the contribution of the ring currents to
the chemical shift of His 28, δRC, as calculated by Sparta+ for snapshots saved every 4.5 ps of the MD trajectory. (c) The normalized distribution of
the Sparta+ predicted shifts of His 28 HN from the MD trajectory. The Sparta+ prediction obtained from the X-ray structure (pdb code 1RIL) is
shown as a red square, the average value of the Sparta+ predictions over the entire MD trajectory is shown as a blue square, and the experimentally
measured value is shown as a black diamond. (d) The conformation of His 28 observed in the X-ray structure (red) and from two representative MD
snapshots (blue), along with the corresponding Sparta+ shift prediction of His 28 HN and the δRC value for those conformations. His 28 HN is
colored cyan in the X-ray structure and magenta in the MD snapshots.
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contribute to the shift predictions of His 30 HN reveals that,
when the hydrogen bond is formed, the resulting downfield
shift is offset by an upfield ring current shift of a similar
magnitude, and the average chemical shift is predicted to be the
same in the presence or absence of the hydrogen bond (data
not shown). This illustrates how proximal spins can be sensitive
to different structural features of the protein, and underscores
the importance of deconvoluting the effects of the various
structural features that contribute to each chemical shift
prediction before interpreting their agreement with exper-
imental values.
In general, we find that the more dramatic improvements in

the accuracies of δMD values compared to δX-ray values are
observed for ttRNH compared to ecRNH (Table 1) because a
larger number of conformational features observed in the 2.8 Å
resolution X-ray structure of ttRNH (PDB code 1RIL) appear

to be inconsistent with solution chemical shifts when compared
to the 1.5 Å resolution X-ray structure of ecRNH (PDB code
2RN2). Many of these inconsistent conformations are
corrected to conformations in better agreement with solution
chemical shifts within 100 ns of an MD trajectory, resulting in
improved chemical shift predictions that are not solely due to
the presence of conformational dynamics. We note that one
could also obtain shift prediction improvements of this kind
without considering shift predictions averaged over entire MD
trajectories, but from considering individual structures obtained
from X-ray structure refinement protocols that utilize explicit
solvent and MD force fields to relax unfavorable X-ray
conformations.35

A gradual decrease of δMD prediction rmsd’s from
experimental values over the course of a simulation might be
interpreted as dynamical sampling converging on a given time

Figure 5. Chemical shift predictions of Val 5 N in a 450 ns MD simulation of ecRNH in the amber99SB-ILDN force field. (a) The value of the
Sparta+ predicted chemical shift of Val 5 N for snapshots saved every 4.5 ps of the MD trajectory. (b) The value of the χ1 dihedral angle of Val 5 for
snapshots saved every 4.5 ps of the MD trajectory. (c) The normalized distribution of the Sparta+ predicted shifts of Val 5 N from the MD
trajectory. The Sparta+ prediction obtained from the X-ray structure (pdb code 2RN2) is shown as a red square, the average value of the Sparta+
predictions over the entire MD trajectory is shown as a blue square, and the experimentally measured value is shown as a black diamond. (d) The
conformation of Val 5 observed in the X-ray structure (red) and from two representative MD snapshots (blue), along with the corresponding
SPARTA+ shift prediction of Val 5 N and Val 5 χ1 value for those conformations. Val 5 N is colored cyan in the X-ray structure and magenta in the
MD snapshots.

Figure 6. Chemical shift predictions of Phe 27 C′ in a 100 ns MD simulation of ttRNH in the amber99SB force field. (a) The value of the Sparta+
predicted chemical shift of Phe 27 C′ for snapshots saved every 4.5 ps of the MD trajectory. (b) The value of the ϕ dihedral angle of Phe 27 (ϕ27) for
snapshots saved every 4.5 ps of the MD trajectory. (c) The normalized distribution of the Sparta+ predicted shifts of Phe 27 C′ from the MD
trajectory. The Sparta+ prediction obtained from the X-ray structure (pdb code 1RIL) is shown as a red square, the average value of the Sparta+
predictions over the entire MD trajectory is shown as a blue square, and the experimentally measured value is shown as a black diamond. (d) The
conformation of Phe 27 observed in the X-ray structure (red) and from two representative MD snapshots (blue), along with the corresponding
Sparta+ shift prediction of Phe 27 C′ and the ϕ value of Phe 27 (ϕ27) for those conformations. Phe 27 C′ is colored cyan in the X-ray structure and
magenta in the MD snapshots.
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scale; however, such improvements could also be the result of
several successive corrections of X-ray structure artifacts. We
emphasize, however, that the rmsd of predictions averaged
across all residues in a protein may not be the most informative
metric, and note that even if the rmsd of δMD predictions is
the same or higher than the rmsd of the X-ray predicted values
for a given shift type, analysis of the per-residue differences in
δX-ray and δMD may still reveal sites where conformational
dynamics or conformational corrections to the X-ray structure
provide a significantly improved agreement with experiment.
This can be seen in the difference plot of HA predictions in
ecRNH from the 100 ns Amber99SB MD simulation (Figure
S2). The rmsd from experimental values for all HA atoms is
0.25 ppm for both δXray and δMD predictions, which is the
reported accuracy of HA predictions of Sparta+ on static X-ray
structures. However, multiple residues have values of |δMD −
δExp| 0.4 ppm smaller or larger than |δXray − δExp|, suggesting
the presence of conformational dynamics or significant
conformational changes from the X-ray structure. This
illustrates that the rmsd of δMD predictions, as considered at
the macro atom type level across all residues, is not necessarily
an indication that the accuracy of the dynamic modes and
conformational changes observed in a trajectory are supported
by experimental measurements. More detailed structural
analysis of the features of a trajectory, such as those presented
here, are required to determine if the improved predictions can
be attributed to specific dynamic modes rather than conforma-
tional transitions away from X-ray structure conformations. In
general, for a given structure of a protein, the extent to which
chemical shift predictions will improve or worsen when
calculated from a MD trajectory, and the extent to which
those changes will result from differences in the average
conformation compared to the presence of conformational
dynamics, will vary on a case-by-case basis. These changes will
be dependent on how well the structure matches the average
solution conformation, the extent of the conformational
dynamics present in solution, how accurately the conforma-
tional dynamics of the protein are captured by the MD

simulation, and how sensitive the chosen chemical shift
predictor is to those conformational dynamics.

Exposing Errors in Molecular Dynamics Simulations.
In addition to identifying conformational dynamics that
improve agreement with experimental values, an analysis of
MD averaged chemical shifts can also identify erroneous
conformations or motions in MD simulations that may result
from force field deficiencies or insufficient sampling and can
also suggest subsets of conformational space which are more
consistent with experimental data. An example is presented in
Figure 7. Here, the time course and distribution of the chemical
shift predictions of ttRNH Leu 73 HN obtained from a 100 ns
Amber99SB simulation is presented along with the time course
of the distance between the side chain hydroxyl of Ser 70,
which forms a helical N-Cap hydrogen bond with Leu 73 HN
for portions of the trajectory. Examination of the time course
and bimodal distribution of the Leu 73 HN shift makes clear
that the shift is centered around a value of 8.2 ppm when the
hydrogen bond is present, and a value of 9.2 ppm when the
hydrogen bond is absent. The experimental value of 8.0 ppm
suggests that the portion of the trajectory where the hydrogen
bond is absent is not an accurate description of the dynamics in
this region. This assertion is further supported by a comparison
of the simulated 15N generalized order parameter (S2) of Leu
73 for both portions of the trajectory with the experimentally
measured value.27,36 In the portion of the trajectory where the
N-cap hydrogen bond is formed (60−90 ns), a calculated S2

value of 0.82 is obtained, in good agreement with the
experimentally measured value of 0.84. In the portion of the
trajectory where the hydrogen bond is not formed (20−60 ns),
the calculated S2 value is 0.60.
This example also illustrates the potential synergistic

combination of NMR relaxation data, which provide
information on amplitudes and correlation times of bond
vector motions on the ps−ns time scale, and the analysis of
dynamically averaged NMR chemical shifts. MD simulations
and force field modifications are now routinely benchmarked
based on agreements between experimental and simulated
relaxation data.29,36 Conversely, MD simulations are also

Figure 7. Chemical shift predictions of Leu 73 HN in a 100 ns MD simulation of ttRNH in the amber99SB force field. (a) The value of the Sparta+
predicted chemical shift of Leu 73 HN for snapshots saved every 4.5 ps of the MD trajectory. (b) The distance, in Å, between Leu 73 HN and the
side chain hydroxyl O of Ser 70 for snapshots saved every 4.5 ps of the MD trajectory. (c) The normalized distribution of the Sparta+ predicted shifts
of Leu 73 HN from the MD trajectory. The Sparta+ prediction obtained from the X-ray structure (pdb code 1RIL) is shown as a red square, the
average value of the Sparta+ predictions over the entire MD trajectory is shown as a blue square, and the experimentally measured value is shown as
a black diamond. (d) The conformation of Leu 73 HN observed in the X-ray structure (red) and from two representative MD snapshots (blue),
along with the corresponding Sparta+ shift prediction of Leu 73 HN for those conformations. Leu 73 HN is colored cyan in the X-ray structure and
magenta in the MD snapshots.
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routinely employed to provide atomistic interpretations of
relaxation data, for which the absolute accuracy of experimental
measurements can be difficult to establish.37 The additional
consideration of dynamically averaged values of chemical shifts
can provide an orthogonal source of validation of the
correspondence between relaxation measurements and MD
simulations. The analysis of averaged chemical shifts may
enable one to discern between multiple atomistic models of
protein motions that produce simulated relaxation data within
the errors experimental measurements. Additionally, the
different time scale sensitivities of relaxation measurements
and chemical shifts may also provide temporal resolution of
dynamic processes in proteins.
Comparing Molecular Dynamics Trajectories with

Chemical Shift Predictions. Dynamically averaged chemical
shifts also facilitate comparison of multiple MD trajectories of
the same protein. Chemical shifts predicted for 100 ns
simulations in the Amber99SB force field, 450 ns simulations
using the Amber99SB-ILDN correction, and 1 μs simulations in
the Amber99SB force field of ttRNH and ecRNH are
summarized in SI Table 1 and SI Table 2, respectively. On
average, the accuracy of the predictions across the simulations
are similar, suggesting that, for the two force fields tested,
significant differences are not observed on the time scales
studied here. An exception is the improved N shift predictions
in the 450 ns Amber99SB-ILDN and 1 μs Amber99SB
trajectory compared to the 100 ns Amber99SB trajectory (SI
Table 1), which appears to result from obtaining more accurate
side chain rotamer population distributions. A comparison of
the per-residue deviations of the values of |δXray − δExp| −
|δMD − δExp| between trajectories (Figure S4), however, can
illuminate specific differences among the trajectories. For
example, the N-cap hydrogen bond between the side chain
hydroxyl of Ser 70 and Leu 73 HN that breaks and reforms in
the 100 ns Amber99SB simulation of ttRNH (Figure 7)
remains stable in the 450 ns Amber99SB-ILDN and 1 μs
Amber99SB simulation, resulting in more accurate δMD
predictions. Comparing trajectories by differences in averaged
chemical shift predictions may be a particularly useful option
compared to other types of geometric or cluster based
conformational analysis, as it quantifies differences in
trajectories using only a set of conformational features that
are known to influence the most readily accessible NMR
observable, and may provide a good indication of the features
of the trajectories that are most likely to be experimentally
verifiable.
For simulations of ttRNH and ecRNH on time scales from

100 ns to 1 μs, the accuracy of δMD predictions generally do
not improve with simulation length, and in some regions
worsen. Our analyses of the trajectories suggest that this
counterintuitive result may be due to the use of inflexible
protonation states of side chain residues. The active site loop
regions of ttRNH and ecRNH, ranging from residues 120−127,
exhibit substantial conformational dynamics on the ps−ns and
μs−ms time scales by NMR,27,28 and contain a coupled
network of His residues with predicted pKa values ∼5.5, the
experimental pH of the NMR measurements, suggesting
constant pH simulations38 may be necessary to accurately
capture the dynamics of these regions.
Comparison of Chemical Shift Predictors. We have

examined how the choice of chemical shift prediction software
influences the interpretation of dynamically averaged chemical
shifts calculated from MD trajectories. We used the chemical

shift predictors Sparta+, Shiftx2, Shiftx+, Camshift, and ShiftS
to calculate the average chemical shifts for 100 ns MD
simulations of ecRNH and ttRNH in the amber99SB force
field, and compared these values to chemical shifts calculated
from the crystal structures using the same programs. The
results of these calculations are displayed in SI Tables 3 and 4.
We found that the rmsd of MD averaged predictions from

experimental values varied between the predictions in
accordance with their previously reported prediction accuracies,
with the most recently developed Sparta+ and Shiftx+/Shiftx2
yielding the lowest rmsd’s. We observed that major trends and
the most significant changes between δX-ray and δMD are
largely conserved regardless of the choice of shift prediction
software, suggesting that the major conformational depend-
encies of the chemical shift predictions are well captured by all
the chemical shift predictors tested here. The differences
between the shift predictors are generally manifested in small
changes in the locations and widths of the predicted shift
distributions.
A notable exception is the program ShiftS, which in addition

to having substantially larger prediction rmsd’s for values of δX-
ray and δMD, also appears to have a less continuous chemical
shift prediction surface than the other programs examined,
resulting in noisier many-modal predicted shift distributions
where other prediction tools generate smoother single and
bimodal distributions (Figure S5). ShiftS was parametrized
using a database of quantum mechanical chemical shift
calculations performed on protein fragments, rather than
using databases of high resolution X-ray structures and
experimental chemical shifts. The ShiftS parametrization
strategy could potentially enable a predictor to be more
sensitive to smaller conformational fluctuations, as predictors
that are trained to use the structural features of static X-ray
structures to predict dynamically averaged experimental values
may inherently contain some degree of dynamic averaging in
their predictions. When a predictor is trained to predict an
experimental chemical shift, which is in actuality an average
value obtained from an ensemble of dynamic molecules, using
the features of an individual static structure, the predictor may
become less sensitive to the conformational fluctuations that
are contributing to the experimentally measured average. That
is, the predictor may become overly biased toward crystalline
conformations and may erroneously attribute chemical shift
changes that result from conformational dynamics in solution
to the features of static crystal structures. However, inaccuracies
in the quantum calculations used in the ShiftS parametrization,
and the need to extrapolate relationships between the discrete
conformations for which quantum calculations were performed,
could also deleteriously affect the fits, and add additional noise
to the predictions.
The results presented here suggest that the chemical shift

predictors that were trained using high-resolution X-ray
structures (Sparta+, Shiftx2, Shiftx+, and Camshift) are still
sensitive to a range of conformational processes in proteins.
The recently developed 4DSPOT chemical shift prediction
model,39,40 which trains its prediction models using averaged
conformational properties observed in short MD simulations,
rather than individual static structures, has shown some success
in accounting for the effects of conformational dynamics during
shift predictor parametrizations, and presents a promising
approach for improving chemical shift predictors in the future.
The program Shiftx2 combines structure-based chemical shift

predictions, provided by the module Shiftx+, with sequence
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based predictions that are obtained from databases of
experimental chemical shifts. This feature may reduce rmsd’s
of predictions if sequence homologues of a query protein are
present in the Shiftx2 database, and in favorable cases may have
the effect of shifting the center of δMD shift prediction
distributions to be in better agreement with experiment. In
general, however, comparisons of δX-ray and δMD values
obtained solely from Shiftx+, using only structural inputs, will
be more meaningful than those obtained from Shiftx2. A more
detailed benchmark of the suitability of different chemical shift
prediction tools for analyzing dynamics in MD simulations is
needed to further explore these issues.

■ CONCLUSIONS
In this investigation, we have employed the most recently
developed semiempirical NMR chemical shift prediction tools
to evaluate the dynamically averaged values of chemical shifts
obtained from unbiased molecular dynamics simulations of
proteins. We have demonstrated that MD averaged chemical
shift predictions generally improve agreement with exper-
imental values when compared to predictions made from static
X-ray structures and have conducted a detailed analysis of the
structural dynamics and conformational changes associated
with the improvements. We find that analyzing the time course
and distributions of chemical shift predictions from molecular
dynamics trajectories and examining the underlying dynamic
modes that affect the chemical shift predictions can provide
experimental support for atomistic descriptions of a number of
motional processes in proteins.
Most previous structural interpretations of chemical shifts,

both in terms of average structures and dynamics, have focused
on the sensitivity of shifts to backbone ϕ and ψ angles.20,21,25,26

We find that currently available tools for rapid backbone
chemical shift predictions appear to be well suited to describe
population weighted averages of multiple backbone conforma-
tional states and the sampling of smaller fluctuations within
individual backbone conformational basins. We have also
observed that predictions of backbone 1H chemical shifts are
sensitive reporters of fluctuations in aromatic ring currents and
the presence and geometry of hydrogen bonds, and that
backbone nitrogen chemical shift predictions are well suited to
describe side chain χ1 conformational dynamics.
We have also observed that MD averaged chemical shift

predictions that provide an improved agreement with experi-
ment do not necessarily reflect conformational dynamics and
may result from one-time “corrections” in conformations
observed in crystal structures that are unlikely to be populated
in solution, such as those that arise from crystal packing
artifacts. This suggests that an examination of prediction rmsd’s
from experimental values does not necessarily provide a
validation of the dynamic modes observed in an MD trajectory,
and underlies the importance of examining how a specific
motional process of interest affects the agreement of chemical
shift predictions with experimental values. This is likely of
particular importance when using lower-resolution X-ray or
NMR structures, structures obtained from homology models,
and structures obtained from subsets of protein complexes as
starting points of simulations.
In addition to examining structural dynamics in MD

simulations that improved averaged chemical shift predictions,
we have also demonstrated that poor predictions of averaged
chemical shifts can identify spurious conformations and
motions in MD simulations that may result from force field

deficiencies or insufficient sampling and can also suggest
subsets of conformational space that are more consistent with
experimental data.
These results suggest that detailed analyses of dynamically

averaged NMR chemical shifts from MD simulations will serve
as a powerful tool for characterizing protein motions at an
atomistic level. As NMR chemical shifts are the most readily
accessible and ubiquitously measured NMR observable, and
report on a large range of conformational properties in
proteins, analyses such as those presented here should prove
to provide one of the most accessible and informative links
between simulations and experiments. Indeed, work has already
begun to exploit some of the structural information contained
in chemical shifts to aid in the refinement of molecular
mechanics force fields.41,42 As methods for predicting protein
chemical shifts improve, expand to include more accurate
predictions of side chain chemical shifts,12,43,44 and are
optimized to account for conformational dynamics during
parametrizations,39,40 atomistic descriptions of protein struc-
tural dynamics from NMR chemical shifts should become
increasingly quantitative.

■ MATERIALS AND METHODS
Molecular Dynamics Simulations. Simulations were performed

using Desmond Academic release 3 or source release 2.4.2.1.45 The
Amber99SB29 or Amber99SB-ILDN30 force fields were used with
explicit TIP3P31 water. All simulations used a 2.5 fs inner time step on
a 1-1-3 RESPA cycle and were carried out in the NVT ensemble using
a Nose-́Hoover thermostat after equilibration to constant box volume
in the NPT ensemble. All simulations were run at 300 K. For each
protein, E. coli ribonuclease H (ecRNH) and T. thermophilus
ribonuclease H (ttRNH), three simulations were performed: a 100
ns simulation in the Amber99SB force field, a 1 μs simulation in the
Amber99SB force field, and a 450 ns simulation in the Amber99SB-
ILDN force field. Snapshots were saved every 4.5 ps. The 1RIL32 and
2RN233 starting structures were used for ttRNH and ecRNH,
respectively, and all structures were protonated in accordance with
H++46 pKa predictions to replicate the pH of 5.5 used in previous
NMR experiments on the E. coli and T. thermophilus proteins.27,28,47,48

Crystallographic waters were removed and all structures were solvated
with a minimum box buffer of 10 Å using Maestro version 8.5 or 9.1.
Images were prepared in PyMol.

Chemical Shift Calculations. Prior to chemical shift calculations,
waters were removed from each trajectory and each snapshot was
saved as an individual PDB coordinate file. To enable the most robust
parsing of each PDB file by the programs SPARTA+,11 SHIFTX2,12

SHIFTX+,12 CamShift,10 and ShiftS,5−7 a brief 200 step steepest-
descent minimization was applied to the crystal structures and to all
MD snapshots. In the case of the crystal structures, some predictors
require the addition of explicit hydrogens before a calculation can be
performed, while others perform internal routines to add hydrogens.
To enable the most direct comparisons between the prediction
methods, hydrogens were added using the same external minimization
routine instead of the internal routines, so each calculation was
performed on identically prepared coordinates. Minimization was
carried out in the Amber0349 force field using the molecular simulation
toolkit almost-1.0.4.50 This program and force field were chosen as this
combination has previously been shown to improve chemical shift
predictions equally across multiple chemical shift prediction tools
when calculating shifts from structures downloaded from the PDB.10

The length of the minimization was empirically selected such that
further minimization did not improve prediction rmsd’s for crystal
structures. The minimization caused very small fluctuations in the
original positions of the atoms, on the order ∼0.1 Å rmsd from the
unminimized coordinates. The minimizations were also carried out for
all MD snapshots in order to regularize the geometries of the
hydrogen atoms between the MD snapshots and the crystal structures
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and ensure that the differences in shift predictions between the crystal
structures and the MD snapshots were not due to differences in the
hydrogen atom geometries that resulted from the minimization
routine. In the case of the MD snapshots, the average rmsd of the shift
predictions fluctuated insignificantly after minimization (less than 1%
on average). One important consideration was that, in addition to the
minimization routine, a routine was also run to change atom and
residue names to be recognizable to all predictors, which increased the
number of residues which could be parsed by all of the shift predictors.
All experimental shifts were rereferenced using the program Shiftcor.51

Abbreviations. NMR, nuclear magnetic resonance; MD, molec-
ular dynamics; NOE, nuclear Overhauser effect; RDC, residual dipolar
coupling; ecRNH, Escherichia coli ribonuclease H; ttRNH, Thermus
thermophilus ribonuclease H; δMD, average chemical shift prediction
obtained from a MD trajectory; δX-ray, chemical shift prediction
obtained from an X-ray crystal structure; δExp, experimentally
measured chemical shift; S2, generalized order parameter.
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